Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems

نویسندگان

  • Damián R. Fernández
  • Mikhail V. Solodov
چکیده

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for optimality (without any constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming the usual second-order sufficient condition only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for Karush-Kuhn-Tucker systems for variational problems that holds under an appropriate second-order condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilized Sequential Quadratic Programming for Optimization and a Stabilized Newton-type Method for Variational Problems without Constraint Qualifications∗

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality...

متن کامل

Stabilized Sequential Quadratic Programming: a Survey

We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.

متن کامل

A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems

The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated ...

متن کامل

Stabilized Sequential Quadratic Programming

Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where bo...

متن کامل

Inexact Josephy–Newton framework for variational problems and its applications to optimization

We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations, and of the sequential quadratic programming method for optimization problems. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version [9, 2], sequential quadratically constrained quadratic programming [1, 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2010